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Abstract—Driving habits of individual drivers have shown to
have a strong impact on energy consumption and range of electric
vehicles. Eco-driving is a popular procedure for improving the
range by manipulating multiple factors such as the car speed
or providing corrective suggestions related to the route. An
optimized eco-driving can be considered for minimizing the
energy consumption, taking into account the driving conditions
and situations. In this contribution, a driving pattern recognition
is considered wherein two indices namely, driving condition index
(DCI) and driving situation index (DSI) are used to characterize
a certain pattern. Combinations of DCI and DSI are mapped
into a representative driving pattern (RDP) matrix. Based on the
chosen RDP values, a reference speed for the vehicle is generated
and corresponding PI controller parameters tuned within a
driver model to realize eco-driving. The eco-driving strategy is
optimized for minimization of energy consumption with the help
of Pontryagin’s minimum principle (PMP) within a constrained
action space defined by the DCI and DSI indices. This novel
feature allows an event specific optimal solution to be generated
rather than a time specific solution. The simulation results
prove the efficiency of the optimized eco-driving in preserving
the battery energy and charge. It also shows the selection of
representative patterns corresponding to actual driving based on
DCI and DSI indices.

I. INTRODUCTION

Driving behaviour has a direct impact on sustainability
and safety aspects of modern transportation systems. Driving
behaviour is a complex outcome of a driver’s reaction to the
surrounding environment [1]. Mostly, the difference in driving
behaviours arise due to variations in acceleration/deceleration
patterns which may be primarily due to road and traffic
conditions along with other external factors. Driving habits
are also strongly related to individual styles as indicated in
[2]–[6]. In this context, driving in an energy efficient way
can be termed as eco-driving. Eco driving in a more multi-
dimensional sense refers to all those decisions which directly
or indirectly affect the fuel/energy saving and emissions re-

duction [7]. As discussed in [7], it includes route selection,
modification in driving style, vehicle design specifications,
maintenance and judicious use of auxiliary systems like air
conditioning etc.

To analyse driving behaviour, most researches focus on
collection of speed data through naturalistic driving exper-
iments. In [8]–[10], innovative and comprehensive experi-
ments using driving simulators are considered while in [11]–
[13], on board diagnostic scanners (OBDs) are considered.
However, most OBDs are unable to capture the traffic data.
In [2], smartphones are considered as useful tools to sense
and compute data using the crowd sensing technique. The
ultimate goals to realizing eco-driving are to model the human
driving decisions, predict the future decisions over a certain
time horizon, and calculate the optimal control force and
velocity profile that minimizes the total energy consumed by
the vehicle over the considered time horizon.

Several methods have been discussed to model driving
behaviours [14]. Most models employ white box, black box,
and grey box architectures. The white box models are derived
from theoretical mathematical/physical principles whereas the
black box models rely on experimental measurements and are
data driven. According to [14], descriptive models such as
hierarchical and control loop models describe the driving tasks
in terms of a fixed set of actions that a human driver generally
takes. It lacks prediction capability and adaption to different
driving scenarios. Functional models introduce the influence
of uncertainty in driving manoeuvres and hence are more
suitable for prediction. In [15], the driving behaviour mod-
elling is performed with Artificial Neural Networks (ANN)
and Nonlinear Auto Regressive model with eXogenous In-
puts (NARX). An energy-aware personalized joint time-series
modeling (PJTSM) approach is considered in [16] with deep
recurrent neural networks (RNN). Long short-term memory
(LSTM) cell is proposed for motion prediction. Classification
based on NN is also considered in [17] whereas recognition
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based on Fuzzy reasoning is considered in [18]. A self-
organizing map based NN is considered in [19] to recognize
a group of driving patterns.

The main purpose of combining driving pattern recognition
(DPR) with energy management strategies is to improve the
energy/fuel consumption in electric and hybrid vehicles. In
[19], the optimal equivalence factor of an equivalent consump-
tion minimization strategy (ECMS) is adopted based on the
recognized pattern. In [20], the performance of a fuzzy logic-
based energy management controller is shown to improve
when combined with cluster analysis for DPR. The optimal
velocity profile can be computed for minimizing the energy
consumption over a certain time horizon or over a given
route. In [21], a continuous-time convex optimization problem
formulation is presented which is solved using sequential
quadratic programming (SQP). A multi-objective optimization
using weighted sum of objectives is considered in [22]. A
single source shortest path algorithm (SSSP) is proposed for
eco routing and dynamic programming (DP) for eco driving.
A multi-agent reinforcement learning (MARL) is proposed in
[23] for eco as well as safe driving, whereas a hybrid approach
using model predictive control (MPC) and deep reinforcement
learning (DRL) is considered in [24]. Here, MPC is used for
finding a local optimal solution for speed control planning
whereas DRL is used for a long-term planning based on
observed values from MPC. In [25], a simulated annealing
algorithm with multiple objectives is used whereas in [26],
Pontryagin’s minimum principle (PMP) is considered.

It can be concluded from literature that, most optimization
techniques when combined with suitable driving control strate-
gies are capable of generating precise eco-driving protocols,
however, suitable driving pattern recognition/prediction algo-
rithms are essential for real time control in actual traffic and
road conditions. In this contribution, an eco driving strategy
is presented for an electric vehicle with a novel two-layer
DPR. The DPR relies on the computation of two indices
namely, driving condition index DCI and driving situation
index DSI. The DCI and DSI of unknown patterns are mapped
with known patterns called representative driving patterns
(RDPs) to select a certain pattern for the future. The future
optimal driving pattern of the EV is decided by the controller
parameters which minimize the battery energy consumption
for a certain DCI and DSI. In section II the basic concept and
system configuration are presented while in section III, the
optimized eco-driving strategy is elaborated. Finally in section
IV the simulation results are described with discussions and
conclusion.

II. BASIC CONCEPT AND SYSTEM CONFIGURATION

The approach of the proposed DPR has been considered in
[27], [28] to analyse the energy consumption traits of vehicles
under different driving cycles. In this contribution, it is further
extended to allow an eco-driving routine for a battery electric
vehicle (BEV). The concept of the proposed DPR is shown in
Fig. 1. As a first step, an RDP database with precalculated DCI
and DSI values is created. The RDPs are patterns extracted

from standard and real cycles representing different driving
situations and conditions. Then an unknown driving pattern is
classified based on the known RDPs by calculating the DCI
and DSI indices over a certain sampling interval. The key idea
here is to generate an RDP matrix which combines DCI and
DSI indices to define a certain pattern. The choice of the RDP
is used to define the future velocity and energy consumption
of the battery electric vehicle by selecting the pre-optimized
PI controller parameters namely Kp and Ki.

Sampling for
100s

Choice of RDP

Battery electric
vehicle

Driving pattern

Calculation of
DCI and DSI

1 2 3 4 5 6 7 8 90

1 2 3 4 5 6 7 8

DCI

DSI
0,1 0,2 0,8

1,1 1,2 1,8

9,1 9,2 9,8

RDP matrix

Velocity

Consumption

Kp KI

Pre-optimizaed
controller parameters

for RDPs

Fig. 1. Concept of proposed DPR

A. Modelling of the battery electric vehicle

The model of a BEV is considered in Matlab/Simulink as
shown in Fig. 2 [29]. The driver model uses a PI controller
with inputs driving cycle or reference speed and actual vehicle
speed. The error e(t) is used to calculate the controller output
u(t) as,

Fig. 2. Battery electric vehicle

u(t) = Kp{e(t) +
1

Ti

∫ t

0

e(τ)dτ}, (1)

where Kp represents the proportional gain, and Ki the
integral gain. The error e(t) is computed as difference between
desired and actual speed

e(t) = vref (t)− v(t), (2)
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where t is the time interval and τ the integral time. The motor
output power is calculated as,

Pmotor = τmotor ∗ ωmotor, (3)

and input power is given as,

Pin,motor = τmotor ∗ ωmotor + Ploss,motor, (4)

where loss in power is calculated based on efficiency maps.
An equivalent circuit model of the battery is considered with
input power as

Pin,battery = Pbatt,out + Ploss,batt, (5)

where
Pin,batt = I ∗ Voc, (6)

and
Ploss,batt = I2Rint. (7)

Here I represents the current and Rint the internal resistance.
The output power is given by

Pbatt,out = IVoc − I2Rint. (8)

The vehicle is modeled based on the equation of forces as

Ft = Fi + Floss, (9)

where Floss represents the frictional losses due to aerody-
namic, rolling and graviatinal forces. The inertial force is given
by,

Fi = m
dv

dt
, (10)

where v is the vehicle speed, and Ft is the tractive force
generated by the prime mover.

The tractive power and energy are calculated as,

Pt = Ft ∗ v, (11)

and

Et =

∫ tf

t0

Ptdt, (12)

respectively, over the entire drive period t0 to tf

B. Driving Pattern Recognition

The driving of human drivers is influenced by multiple
factors like road, environmental, and mood conditions. The
recognition of driving behaviour is an essential step towards
realizing optimal eco-driving. In this contribution, driving
behaviour is characterized in terms of DCI and DSI indices
to estimate the road and traffic conditions. As a first step,
data is collected along a certain route at different times of
the day as denoted in Table 1. The differences in the driving
patterns along the same route at different times of the day
indicate the variation due to traffic. Four characteristic features
are considered in this contribution namely the average speed,
the maximum acceleration, maximum deceleration, and stop
factor. The extraction of characteristic features is done over a
sample period of 100 seconds. Certain thresholds are defined

TABLE I
SPECIFICATION OF DATA COLLECTED ALONG A PARTICULAR ROUTE

Data Source Destination Distance (Km) Time (Min)
recorded at travelled taken

Day 1, 09:35 Hrs 12◦58’53.2” N,
77◦43’35.8” E

12◦55’23.1”N,
77◦41’06.1” E 12.4 Kms 45 min

Day 1, 17:00 Hrs 12◦55’23.1”N,
77◦41’06.1” E

12◦58’18.0”N,
77◦42’55.0” E 14.4 Kms 40 min

Day 2, 09:35 Hrs 12◦58’53.2”N,
77◦43’35.8 E

12◦55’23.1”N,
77◦41’06.1” E 12.4 Kms 30 min

Day 2, 18:15 Hrs 12◦55’43.1”N,
77◦40’47.3” E

12◦58’18.0”N,
77◦42’55.0” E 12.2 Kms 30 min

for the minimum and maximum boundaries of these values,
based on which the DCI and DSI indices are calculated.

The procedure for obtaining the DCI and DSI indices is
explained in Fig. 3. First the driving pattern is sampled and
the value of average speed (Savg) is computed. Minimum and
maximum thresholds are defined based on typical standard
data namely Savg,min and Savg,max. Then, based on the range
of Savg , DCI indices are defined. The maximum positive and
negative acceleration (A+max and A−min) along with stop
factor (sf ) are also computed and again based on pre-defined
thresholds, DSI indices are defined. In Fig. 4, the values

Sampling

Calculation
of average speed

(S )avg

Check if
S< S ORavg,min

S <S <Savg,min avg avg,max

OR
S >Savg avg,max

Check if
A <A < A+max,min +max +max,max

A <A < A-max,min -max -max,max

sf=1 OR sf=0

Assign
DCI

Calculation of maximum positive (A ),+max

negative acceleration (A ),-max

and stop factor (sf)

Driving pattern (real/standard)

Assign
DSI

Fig. 3. Calculation of DCI and DSI indices

of characteristic features attained from a 100 second sample
of the real driving cycle is shown. A similar procedure of
calculating DCI and DSI is followed with patterns extracted
from standard cycles. An RDP matrix is created based on the
combinations of DCI and DSI indices as shown in Fig. 5. As
shown in Fig. 5, the combination of DCI and DSI are mapped
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in a matrix known as the RDP matrix. Here, a RDP value of
6.1 indicates DCI value as 6 and DSI value as 1.

III. ECO DRIVING WITH BEV

Developing an optimized driving strategy for minimizing
the battery energy consumption or sustaining the charge over
a longer range is the goal of eco driving as considered in this
contribution. The optimal speed control problem is defined to
minimize the power over a given time interval t0 to tf .

J =

∫ tf

t0

Pt(x,u)dt (13)

subject to (14)
ẋ = f(x,u)

x ∈ X ,u ∈ U(x)

x(t0) = x0, x(tf ) = xf

. (15)

Here,

x =
⌈
v
⌉

and u =

⌈
Kp

Ki

⌉
. (16)

The input u(t) or control variables are the PI controller pa-
rameters Kp and Ki. Pontryagin’s minimum principle (PMP)
has been popularly used in [30]–[32] for planning of eco-
driving schedules due to its near optimal solutions and real-
time applicability. The Hamiltonian H is formulated as [33],

H(x,u,λ) = Pt(x,u) + λT · f(x,u) (17)

Here, λ is the co-state variable which is a function of time
and f(x,u) are the constraint functions. The goal is to find an
optimal control policy u∗ and corresponding x∗ that maximize
H.

H(x∗,u∗,λ) ≥ H(x,u,λ) (18)

with necessary conditions,

ẋ∗ = ∂H/∂λ

λ̇
∗
= −∂H/∂x

u∗ = argmin
u∈U

H(x,u,λ)

 for all t ∈ [t0, tf ] . (19)

Here the constraint functions are product of states xi and
associated co-states λi. Therefore from equation 17, H can
be written as,

H(x, u, λ) = Pt(x, u) + λv
T v, (20)

where
λ̇v = −dH

dv
. (21)

Thus, the objective function of equation 15 can be reformu-
lated as

MinJ =

∫ tf

t0

k=9,n=8∑
k=0,n=0

mak,n vk dt, (22)

subject to

vk,avg,min ≤ vk,avg ≤ vk,avg,max (23)

a+k,n,min ≤ a+k,n ≤ a+k,n,max (24)

a−k,n,min ≤ a−k,n ≤ a−k,n,max (25)

Here, the state constraints are event discretized to include
the DCI and DSI indices. This contraint space includes k
index for DCI values and n for DSI values. Thus, the action
space includes an optimal solution of each pair of [dci, dsi]
as mapped by the RDP matrix. This is further explained in
Fig. 6. The first step is to compute the DCI and DSI indices,
next, based on the average values of speed vavg(t), maximum
positive and negative acceleration a+ and a−, to perform the
optimization with PMP with [k, n] indices representing DCI
and DSI respectively. Then to generate the control actions for
the driver model which aims to track the vref corresponding
to the chosen RDP for the BEV model.

DCI, DSI
computation

Optimization
with
PMP

vavg(t)

Driver

u (t)2

u (t)1
Vehicle

BEV

v (t)act

v (t) fromref

chosen RDP

v (t)actv (t)act

a
+
(t)

a
-
(t)

k(t),n(t)

Min J =
k=0; n=0

k=9; n=8

ma vk,n k

Fig. 6. Optimized eco-driving with PMP

IV. SIMULATION RESULTS

For a real driving cycle, the DCI and DSI indices are
shown in Fig. 7. Here, the DCI index varies between 9 and 3
depending on the variations in average speed of the vehicle.
The DSI index however, does not change much. The chosen
DSI values are either 1 or 2 depending on whether there has
been any stopping or not. A driving segment having DCI
value of 6 and DSI value of 2 is shown in Fig. 8. The actual
driving shows a gradual acceleration and less braking, leading
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to a maximum speed of about 100 Km/Hr. The suggested
RDP shows steeper acceleration and deceleration, maintaining
the maximum speed below 100 Km/Hr. The corresponding
improvement in battery energy and SOC is evident from Fig.
9. Here, based on the chosen RDP, the optimized eco-driving
strategy has conserved the SOC and hence more energy can
be recovered while driving.
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The simulation results will be further elaborated in the final
version of this paper to include more real world driving cycles
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Fig. 9. Driving segment having DCI 6 and DSI 2 showing a) battery SOC
b) battery energy for eco and regular driving

and a detailed analysis of the effect of optimization variables
on the SOC and energy consumption will be provided.

V. CONCLUSION

The importance of combining driving pattern recognition
(DPR) with energy management of electric/hybrid vehicles has
proved to result in improved solutions in terms of optimization
objectives. In this contribution an energy-aware, eco-driving
strategy is considered for a battery electric vehicle with a novel
DPR which relies on computation of two indices: driving con-
dition index (DCI) and driving situation index (DSI). Together
these indices are represented in a two dimensional represen-
tative driving pattern (RDP) matrix such that corresponding
to each combination of DCI, DSI, a unique identifier that is,
a driving pattern is defined. These RDPs are formed based
on real and standard cycles. An unknown cycle is classified
based on the known RDPs and PI controller parameters are
tuned corresponding to the RDP which minimizes the energy
consumption. The main idea is to formulate an optimization
problem within a constrained action space defined by DCI
and DSI indices. In other words, for every DCI, DSI, there
exists a unique solution and the corresponding RDP which
minimizes the energy consumption is used as reference speed
to the PI controller. Thus a more event dependent solution is
achieved as it is based on the fact that every pattern within a
complete cycle maybe similar or different based on the two
indices. As a future step, more real world cycles will be used
to analyse the effect of proposed DPR and optimization on
energy consumption.
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